About the AM Academy

AM Academy is the leading company in Additive Manufacturing online learning and education services powered by AMPOWER.

About the AM Academy

Why AM Academy?

Better products, more resilient supply chains, sustainable manufacturing – the potential of Additive Manufacturing is endless. Today, there is a constantly growing number of companies across a wide range of industries demonstrating the successful use of AM in their applications. These applications reach far beyond simple prototypes and the technology has grown to a scale where no company can simply ignore it. At the same time, it gets increasingly complex to navigate in this environment and to separate hype from reality. New technologies are coming up seemingly on a weekly basis and it is challenging to understand which ones are relevant for your applications. We believe that the AM Academy can be a solution to these challenges. 

Within our projects we realized that a lack of knowledge related to AM is often holding back the widespread adoption of the technology. Even in companies that have already implemented Additive Manufacturing it is typically a small group of experts that understands how to utilize the technology, which leads to a limited number of applications and thus unused potential. This led to AMPOWER’s decision to combine our profound experience in the AM industry and our expertise in training engineers to create the AM Academy. Our goal is to provide every individual and organization the relevant knowledge to utilize Additive Manufacturing in their business. 

In order to deliver the most exhaustive and objective learning experience, AMPOWER created a combined online and onsite training concept. The online learning consists of several modules and is targeted towards every individual in an organization that works with Additive Manufacturing. The live trainings act as a complement to the online learning and consists of hands-on technology sessions or discussions related to applications or AM strategy. 

The AM Academy is powered by AMPOWER and incorporated as an separate legal entity in Germany. This allows a complete focus on all topics related to training and education while at the same time utilizing synergies with AMPOWER.

The company behind the AM Academy

About AMPOWER

AMPOWER is the leading consultancy in the field of industrial Additive Manufacturing. AMPOWER advises their clients on strategic decisions by developing and analyzing market scenarios as well as compiling technology studies. On operational level, AMPOWER supports the introduction of Additive Manufacturing through targeted training programs as well as identification and development of components suitable for production. Further services include the setup of quality management and support in qualification of internal and external machine capacity. The company was founded in 2017 is based in Hamburg, Germany.

Our corporate values “independent”, “trustworthy” and “goal-oriented” reflect in our daily work where we strive to always deliver the newest market and technology insights into the Additive Manufacturing world to our customers. Find out more about AMPOWER.

AMPOWER Academy Training Benjamin Haller Contact

Benjamin Haller

Director Academy

Benjamin Haller works as Managing Director at the AM Academy GmbH. Benjamin has worked for different companies in the Additive Manufacturing industry for several years and always focused his work on helping companies introduce Additive Manufacturing in their business. 

He also successfully developed an Additive Manufacturing online learning platform that is now used by several industrial companies. 

Write us

How to contact us

Contact

[email protected]

+49 40 99999 578

Visiting Address:

AM Academy GmbH

Alstertor 13

20095 Hamburg

Germany

Sinter-based AM technologies and process chain

Sinter-based AM - a technology overview

Many different printing technologies - one sintering process

The sinter-based AM (SBAM) technologies have, as the name suggests, the sintering process in common. In this process, the printed green part is consolidated into a dense part and receives its final properties. The green part can be printed in advance using different technologies.They all have in common that metal powder is bound to the desired shape by a binder. The best-known printing technologies include Binder Jetting and Filament Material Extrusion.

In this section, you learn everything about the sinter-based AM  process chain and get an overview of the different printing technologies.

Goal and structure of this course

This course is aimed at engineers, designers and other professionals that are working closely with sinter-based AM technologies. The goal is to cover the most important aspects that will enable engineers and designers to fully grasp the capabilities and technical limitations of the printing technologies and the sintering process to succeed in technology selection and part design. Besides going through the course from the beginning until the end, this course can also act as a constant source of knowledge while working on AM projects. 

The course is structured into the following sections.

This section will start with an overview of the sinter-based AM process chain and its printing technologies, followed by a technology deep dive into the most important aspects of the BJT technology, followed by a closer look at the debinding and sintering step also including sintering simulation .

The second section will provide an overview of the different materials that are available as well as part characteristics that can be achieved with the BJT process and typical methods for quality assurance. Finally, several common defects in the BJT process are presented. 

The last section will act as a guideline for designers. Besides generally describing the process when designing for Additive Manufacturing, actionable restrictions and guidelines for the BJT process are provided. The final section will present several design examples from different industries. 

What you will find in this section

Sinter-based AM process chain

From digital model to finished part

Data preparation

Simulation to compensate the deformation during the sintering step, nesting of parts and definition of printing parameters

Printing

Through various printing processes, different feedstocks such as metal powders, filaments, pellets or dispersions are processed into green parts

Unpacking

Unpacking of fragile green parts needs to be done carefully and is typically a manual process.

Debinding

Debinding describes the process of removing the binder which results in a brown part

Sintering

To reach the structural integrity of a metal part, a sinter process is required. The powder particles fuse together to a coherent, solid structure via a mass transport that occurs at the atomic scale driven via diffusional forces.

The brown part shrinks ~13-21 % in each direction.

The process chain of sinter-based technologies differs from other AM Technologies. Especially the post-printing processes (debinding and sintering) are crucial to achieve the intended mechanical properties.

Technology principle

How does Binder Jetting work?

Binder Jetting is a powder based Additive Manufacturing technology in which a liquid polymer binder is selectively deposited onto the powder bed binding the metal particles and forming a green body.

The metal powder is applied to a build platform in a typical layer thickness of 40 µm to 100 µm. Subsequently a modified 2D print head apply a binder selectively onto the powder bed. Depending on machine technology a hardening or curing process of the binder is performed in parallel for each layer and/or at the end of the whole build. During the in-situ curing process a heat source is used to solidify the binder and form a solid polymer – metal powder composite.

Working Principle of Binder Jetting

Afterwards the build platform moves downward by the amount of one layer thickness and a new layer of powder is applied. Again, the liquid binder is deposited and hardened in the required regions of the next layer to form the green body. This process is repeated until the complete part is printed. After the complete printing process is finished the parts have to be removed from the “powder cake” meaning the surrounding loose but densified powder. To improve the removal of the excess powder from the green body often brushes or a blasting gun with air pressure are used.

To create a dense metal part the 3D printed green body has to be post-processed in a debinding and sintering process. Similar to the metal injection molding process BJT parts are placed in a high temperature furnace, where the binder is burnt out and the remaining metal particles are sintered together. The sintering results in densification of the 3D printed green body to a metal part with high densities of 97 % to 99,5%, dependent of the material.

Printing Technologies

Metal Binder Jetting

Binder Jetting is a powder based Additive Manufacturing technology in which a liquid polymer binder is selectively deposited onto the powder bed binding the metal particles and forming a green body.

The metal powder is applied to a build platform in a typical layer thickness of 40 µm to 100 µm. Subsequently a modified 2D print head apply a binder selectively onto the powder bed. Depending on machine technology a hardening or curing process of the binder is performed in parallel for each layer and/or at the end of the whole build. During the in-situ curing process a heat source is used to solidify the binder and form a solid polymer – metal powder composite.

Working Principle of Binder Jetting

Material Extrusion

Binder Jetting is a powder based Additive Manufacturing technology in which a liquid polymer binder is selectively deposited onto the powder bed binding the metal particles and forming a green body.

The metal powder is applied to a build platform in a typical layer thickness of 40 µm to 100 µm. Subsequently a modified 2D print head apply a binder selectively onto the powder bed. Depending on machine technology a hardening or curing process of the binder is performed in parallel for each layer and/or at the end of the whole build. During the in-situ curing process a heat source is used to solidify the binder and form a solid polymer – metal powder composite.

Working Principle of Binder Jetting

Mold Slurry Deposition

Binder Jetting is a powder based Additive Manufacturing technology in which a liquid polymer binder is selectively deposited onto the powder bed binding the metal particles and forming a green body.

The metal powder is applied to a build platform in a typical layer thickness of 40 µm to 100 µm. Subsequently a modified 2D print head apply a binder selectively onto the powder bed. Depending on machine technology a hardening or curing process of the binder is performed in parallel for each layer and/or at the end of the whole build. During the in-situ curing process a heat source is used to solidify the binder and form a solid polymer – metal powder composite.

Working Principle of Binder Jetting

Metal Selective Laser Sintering

Binder Jetting is a powder based Additive Manufacturing technology in which a liquid polymer binder is selectively deposited onto the powder bed binding the metal particles and forming a green body.

The metal powder is applied to a build platform in a typical layer thickness of 40 µm to 100 µm. Subsequently a modified 2D print head apply a binder selectively onto the powder bed. Depending on machine technology a hardening or curing process of the binder is performed in parallel for each layer and/or at the end of the whole build. During the in-situ curing process a heat source is used to solidify the binder and form a solid polymer – metal powder composite.

Working Principle of Binder Jetting